Identification and Characterisation of Three Novel Compounds in the Sodium-Aluminium-Oxygen System †

Marten G. Barker,* Paul G. Gadd, and Michael J. Begley

Department of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD

Reactions of sodium oxide with α -Al₂O₃ have produced three novel sodium-rich aluminates, Na₇Al₃O₈ (triclinic, space group *P*1), Na₁₇Al₅O₁₆ (monoclinic, space group *Cm*), and Na₅AlO₄ (orthorhombic, space group *Pbca*). X-Ray crystal structure determinations have shown Na₇Al₃O₈ to consist of infinite double chains composed of Al₆O₁₆ rings linked by oxygen bridges, Na₁₇Al₅O₁₆ to consist of discrete Al₅O₁₆ chains of corner-sharing AlO₄ tetrahedra with almost linear angles about the bridging oxygens, and Na₅AlO₄ to be composed of isolated AlO₄ tetrahedra.

We have been interested in the formation of aluminates in liquid sodium primarily as a consequence of our studies on the reaction of liquid sodium with concrete. Sodium aluminates are also of current interest in the development of the sodium-sulphur battery, where degradation of the β -Al₂O₃ electrolyte in oxygen-contaminated sodium may result from the formation of sodium aluminates.

The most alkali-rich sodium aluminate reported in the literature is NaAlO₂, but higher aluminates have been prepared for both potassium and lithium. The crystal structures of Li₅AlO₄, in two phase modifications,¹⁻³ and K₃AlO₃ ⁴ have been determined. The compound Li₃AlO₃ has also been reported,⁵ but its structure was not determined. On reaction of α -Al₂O₃ with liquid sodium containing various amounts of oxygen, we found phases other than NaAlO₂ were being formed, but were unidentifiable from their X-ray powder diffraction patterns alone.

We thus embarked on a solid-state study of the Na-Al-O system using α -Al₂O₃ and Na₂O as reactants (NaOH and Na₂-CO₃ are only reactive enough to form NaAlO₂) which led to the identification and characterisation of three new alkalirich sodium aluminates, Na₇Al₃O₈,⁶ Na₁₇Al₅O₁₆,⁷ and Na₅-AlO₄,⁶ with no other sodium-rich aluminates being formed under our experimental conditions. The crystal-structure determinations of these aluminates all show aluminium atoms in a tetrahedral co-ordination with oxygen and that there are interesting similarities with corresponding Na-Fe-O and Na-Ga-O systems.

Experimental

(a) Solid-state Reactions.—All reactants were commercially obtained. Sodium oxide (Alfa Inorganics Ltd.) was purified prior to use by vacuum distillation at 350 °C to remove the excess of metallic sodium present as an impurity. The α -Al₂O₃ was dried thoroughly at 600 °C before use.

The reactants were ground together in the appropriate molar ratios under an argon atmosphere in an evacuable drybox, before being compressed to pellet form to produce an intimate mixture, placed in silver crucibles, and heated at 700 °C for between 18 and 48 h under a stream of argon. Once cooled, the products were again transferred to the drybox so that further manipulations could be accomplished without risk of atmospheric contamination. Portions of the products were ground and examined by X-ray powder diffraction (the diffractometer had a facility to enable the X-ray chamber to be flushed with nitrogen to maintain an inert atmosphere) and the remainder was examined microscopically for the presence of suitable crystals for single-crystal analysis.

(b) Liquid Sodium Experiments.—The sodium was handled in an argon-filled evacuable dry-box. Weighed quantities of α -Al₂O₃ were placed in nickel crucibles and corresponding amounts of NiO were added to give the required oxygen : aluminium ratio. Nickel oxide was used as it reacts with sodium at 282 °C to give Na₂O and Ni according to equation (1).

$$NiO + 2Na \longrightarrow Na_2O + Ni$$
 (1)

Hence, this provided a convenient way of introducing sodium oxide free from contamination and also of easy weighing as no protection from the atmosphere was necessary. The nickel crucibles were then filled with liquid sodium containing about 5 p.p.m. oxygen from a small glass pipette and sealed into screw-topped stainless-steel crucibles to prevent sodium loss during heating. These were sealed in a stainless-steel vessel and heated at the required temperature for 7 d in order to achieve equilibrium. The crucibles were then opened in an argon-filled evacuable dry-box. Half of the sample was removed and X-ray powder diffraction analysis performed on the product whilst it was still contained in the sodium matrix. The remainder was heated at 350 °C under vacuum to distil off the excess of sodium and the residues were again examined by X-ray powder diffraction.

(c) Structure Determinations.—In all cases data were collected on a Hilger and Watts four-circle diffractometer [λ (Mo- K_{α_1}) = 0.709 26 Å], the crystals having been sealed inside 0.2-mm Lindemann glass capillaries to protect them from the atmosphere.

Crystal data. $\ddagger Na_7Al_3O_8$, M = 369.9, triclinic, a = 7.972(1), b = 5.851(1), c = 11.272(3) Å, $\alpha = 89.71(4)$, $\beta = 110.57(2)$, $\gamma = 108.99(2)^\circ$, U = 461.79 Å³, Z = 2, $D_c = 2.66$ g cm⁻³, F(000) = 360, $\mu(Mo-K_{\alpha_1}) = 7.91$ cm⁻¹, space group PI; R = 0.0327, and R' = 0.0361 for 1 569 independent reflections with intensities $I > 3\sigma(I)$ in the range $1 < \theta < 27^\circ$.

Na₁₇Al₅O₁₆, M = 781.7, monoclinic, a = 5.961(1), b = 32.769(5), c = 5.989(1) Å, $\beta = 120.07(2)^{\circ}$, U = 1.012.42 Å³, Z = 2, $D_c = 2.56$ g cm⁻³, F(000) = 760, $\mu(Mo-K_{x_1}) = 7.48$ cm⁻¹, space group Cm; R = 0.0538 and R' = 0.0630 for 676 independent reflections with $I > 3\sigma(I)$ in the range $1 < \theta < 30^{\circ}$.

Na₅AlO₄, M = 205.9, orthorhombic, a = 5.894(1), b =

 $\ddagger R = (\Sigma ||F_0| - |F_c||) / \Sigma |F_o|, R' =$ Hamilton weighted R value.

[†] Supplementary data available (No. SUP 23818, 39 pp.): thermal parameters, structure factors. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1984, Issue 1, pp. xvii—xix.

Atom	X/a	Y/b	Z c	Atom	X a	Y/b	Z/c
Na(1)	0.692 6(2)	0.446 6(3)	0.762 3(1)	Al(3)	0,299 6(1)	$0.069\ 2(2)$	0.135 7(1)
Na(2)	-0.0875(2)	-1.3719(3)	0.555 9(1)	O (1)	0.0102(3)	-1.4634(4)	0.769 8(2)
Na(3)	0.483 0(2)	-0.2772(3)	0.5524(1)	O(2)	0.366 8(4)	-0.6812(4)	0.582 5(2)
Na(4)	0.9001(2)	0.151 7(3)	0.056 5(1)	O(3)	0.556 7(4)	0.020 8(5)	0.728 5(2)
Na(5)	0.509 3(2)	0.744 6(3)	0.056 5(1)	O(4)	0.200 4(3)	-1.2199(4)	0.535 7(2)
Na(6)	0.707 8(2)	0.471 4(3)	0.270 8(1)	O(5)	0.215 7(4)	-0.911 5(5)	0.760 1(2)
Na(7)	0.901 9(2)	0.659 2(3)	0.051 6(1)	O(6)	0.404 7(4)	0.359 8(4)	0.1042(2)
Al(1)	0.093 9(1)	-1.1653(2)	0.840 6(1)	O(7)	0.097 4(4)	0.068 9(5)	0.165 9(2)
Al(2)	0.324 9(1)	-0.958 5(2)	0.645 7(1)	O(8)	0.767 8(4)	0.152 6(5)	-0.004 6(2)

Table 1. Atomic co-ordinates for Na₇Al₃O₈

Table 2. Bond lengths (Å) and selected angles (°) for Na₇Al₃O₈ with standard deviations in parentheses

Al(1)=O(1)	1.734(3)	Al(3)-O(8)	1.779(3)	Na(3) - O(2)	2.298(3)	Na(6) = O(1)	2.461(3)
Al(1)-O(5)	1.775(3)	Na(1) - O(1)	2.383(3)	Na(3) = O(3)	2.424(3)	Na(6) = O(2)	2.404(3)
Al(1) = O(7)	1.769(3)	Na(1) - O(2)	2.543(3)	Na(3) - O(4)	2.327(3)	Na(6) - O(4)	2.646(3)
Al(1) - O(8)	1.776(3)	Na(1) = O(3)	2.343(3)	Na(4) = O(1)	2.281(3)	Na(6)-O(5)	2.722(3)
Al(2) - O(2)	1.747(3)	Na(1) - O(6)	2.357(3)	Na(4) = O(4)	2.226(3)	Na(6)-O(6)	2.364(3)
Al(2)-O(3)	1.798(3)	Na(1) = O(7)	2.734(3)	Na(4) - O(5)	2.631(3)	Na(7) = O(1)	2.316(3)
A1(2) - O(4)	1.740(3)	Na(2) = O(1)	2.376(3)	Na(4) - O(7)	2.272(3)	Na(7) - O(6)	2.425(3)
Al(5) - O(5)	1.798(3)	Na(2) = O(2)	2.344(3)	Na(5) = O(5)	2.379(3)	Na(7) = O(7)	2.454(3)
Al(3) - O(3)	1.756(3)	Na(2) - O(4)	2.269(3)	Na(5)-O(6)	2.266(3)	Na(7) - O(8)	2.795(3)
Al(3) = O(6)	1.730(3)	Na(2) - O(4)	2.357(3)	Na(5)-O(6)	2.298(3)	Na(7)-O(8)	2.741(3)
Al(3)-O(7)	1.761(3)	Na(3)-O(2)	2.313(3)	Na(6)=O(1)	2.353(3)		.,
O(1) - AI(1) - O(5)	113.4(1)	O(2) - AI(2) - O(3)	105.6(1)	O(3)-Al(3)-O(6)	114.5(1)	Al(2)=O(3)=Al(3)	145.4(2)
O(1) - A(1) - O(7)	110.9(1)	O(2) - Al(2) - O(4)	116.3(1)	O(3) - A(3) - O(7)	106.3(1)	Al(1)=O(5)=Al(2)	136.9(2)
O(1) - A(1) - O(8)	108.4(1)	O(2) - Al(2) - O(5)	109.4(1)	O(3)-Al(3)-O(8)	107.2(1)	Al(1) = O(7) = Al(3)	157.1(2)
O(5) - Al(1) - O(7)	103.4(1)	O(3) - A(2) - O(4)	104.8(1)	O(6) - Al(3) - O(7)	106.7(1)	Al(1)-O(8)-Al(3)	130.1(1)
O(5) - Al(1) - O(8)	113.4(1)	O(3) - Al(2) - O(5)	108,4(1)	O(6) - Al(3) - O(8)	111.4(1)		
O(7) - Al(1) - O(8)	106.9(1)	O(4) - Al(2) - O(5)	111.7(1)	O(7) - Al(3) - O(8)	110.3(1)		
			()				

Figure 1. The crystal structure of $Na_7Al_3O_8$ viewed along the *b* axis

17.870(4), c = 10.095(3) Å, U = 1.063.3 Å³, Z = 8, $D_c = 2.57$ g cm⁻³, F(000) = 800, $\mu(Mo-K_{z_1}) = 7.38$ cm⁻¹, space group *Pbca*; R = 0.034 and R' = 0.037 for 598 independent reflections with $I > 3\sigma(I)$ in the range $1 < \theta < 25^{\circ}$.

Refinement. The initial atomic co-ordinates of $Na_7Al_3O_8$ had to be found using direct methods by means of the MUL-

TAN 78 program.⁸ This correctly located the positions of four Na, two Al, and five oxygen atoms. Fourier syntheses phased on these co-ordinates using the CRYSTALS program ⁹ revealed the position of all the remaining atoms. After complete refinement, a Fourier difference electron-density synthesis showed no significant peaks. The structure is shown in Figure 1 projected along the *b* axis. The atomic co-ordinates are listed in Table 1 and the bond distances and angles in Table 2.

The solution of the structure of Na₁₇Al₅O₁₆ was not as straightforward in that the use of direct methods was unsuccessful. We, therefore, had to resort to interpretation of a sharpened Patterson map taken in X, Z sections, in spite of there being no heavy atoms involved. Identification of two vectors at the right distance and angle for Al-O vectors at Y = 0.0, together with packing considerations, enabled us to find the approximate positions of all the atoms in the Al-O framework, placing Al(1) on the mirror plane at 0,0,0 since the position of the origin is arbitrary in space group Cm. Fourier syntheses phased on these positions yielded all the sodium atoms and a difference Fourier showed no significant peaks after completion of the refinement. The structure, viewed along the c axis, is shown in Figure 2, and atomic co-ordinates, bond lengths and angles are listed in Tables 3 and 4 respectively.

The structure of Na_5AlO_4 was solved initially using the MULTAN program which located the positions of four Na, one Al, and three O atoms. The remaining positions were found as before using CRYSTALS. Again there were no significant peaks on the difference Fourier after refinement. Figure 3 shows the structure viewed down the *a* axis, and the atomic co-ordinates, bond lengths and angles are listed in Tables 5 and 6 respectively.

Atom	X/a	Y/b	Z/c	Atom	X/a	Y/b	Z/c
Na(1)	-0.031(3)	0.323 8(3)	0.466(3)	Al(3)	-0.010(3)	0.180 4(2)	-0.005(3)
Na(2)	0.488(4)	0.0000	0.489(4)	O (1)	0.308(4)	0.0000	0.031(5)
Na(3)	0.107(3)	0.453 9(3)	0.078(3)	O(2)	0.001(5)	0.0000	0.286(6)
Na(4)	0.050(3)	0.137 5(4)	0.584(3)	O(3)	-0.179(5)	0.043 1(6)	-0.171(4)
Na(5)	0.090(3)	0.361 9(4)	0.062(3)	O(4)	-0.619(4)	0.093 9(5)	-0.342(4)
Na(6)	0.076(3)	0.046 2(3)	0.614(3)	O(5)	-0.354(3)	0.093 1(4)	10.632(3)
Na(7)	0.193(3)	0.008 1(3)	0.195(3)	O(6)	-0.124(4)	0.130 2(5)	-0.116(3)
Na(8)	0.111(3)	0.270 6(3)	0.052(3)	O(7)	0.295(4)	0.184 7(4)	0.011(4)
Na(9)	0.072(3)	0.225 1(3)	0.625(3)	O(8)	-0.010(4)	0.186 3(5)	0.278(3)
Al(1)	0.0000	0.0000	0.0000	O(9)	0.277(4)	0.284 2(4)	0.772(3)
Al(2)	-0.326(2)	0.089 7(2)	-0.323(2)		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		

Table 3. Atomic co-ordinates for Na17Al₃O16

Table 4. Bond lengths (Å) and angles (°) for Na₁₇Al₅O₁₆ with standard deviations in parentheses

Al(1)-O(1)	1.75(2)	Na(1)-O(6)	2.89(2)	Na(5)-O(4)	2.55(2)	Na(8)-O(7)	2.30(2)
AI(1) - O(2)	1.71(3)	Na(1)-O(7)	2.40(2)	Na(5)-O(5)	2.24(2)	Na(8)-O(8)	2.42(2)
Al(1) = O(3)	1.75(2)	Na(1)-O(8)	2.51(2)	Na(5)-O(6)	2.43(2)	Na(8)-O(9)	2.38(2)
Al(1)-O(3)	1.76(2)	Na(1)-O(9)	2.25(2)	Na(5)=O(7)	2.23(2)	Na(8)-O(9)	2.58(2)
				Na(5)-O(8)	2.60(2)		
Al(2)-O(3)	1.77(2)	Na(2)-O(1)	2.39(3)			Na(3)-O(1)	2.24(2)
Al(2)-O(4)	1.70(2)	Na(2)-O(2)	2.53(3)	Na(6)=O(1)	2.64(2)	Na(3)-O(2)	2.53(2)
Al(2) = O(5)	1.78(1)	Na(2) - O(3)	2.45(3)	Na(6)-O(2)	2.34(2)	Na(3) - O(3')	2.39(3)
Al(2)-O(6)	1.80(2)	Na(2) = O(3)	2.45(3)	Na(6)=O(3)	2.45(2)	Na(3)-O(4)	2.68(2)
	• •	.,		Na(6)-O(4)	2.31(2)	Na(3)-O(5)	2.25(2)
Al(3)-O(6)	1.78(2)	Na(4)-O(4)	2.29(2)	Na(6) = O(5)	2.70(2)		()
Al(3)-O(7)	1.78(1)	Na(4)-O(5)	2.54(2)	., .,		Na(9)-O(7)	2.40(2)
Al(3)-O(8)	1.71(2)	Na(4)-O(6)	2.49(2)	Na(7)=O(3)	2.65(2)	Na(9)-O(8)	2.27(2)
Al(3)-O(9)	1.74(1)	Na(4)-O(7)	2.70(2)	Na(7)-O(4)	2.42(2)	Na(9)-O(9)	2.22(2)
		Na(4)-O(8)	2.32(2)	Na(7) = O(5)	2.37(2)	Na(9')-O(9')	2.25(2)
				Na(7)-O(6)	2.32(2)		
O(1) - A(1) - C)(2)	114(1)	O(3) - A(2) - O(4)	109(1)		O(6) - A(3) - O(7)	106.4(8)
O(1) - A(1) - C	$\hat{\mathbf{X}}_{3}$	111(1)	O(3) - A(2) - O(5)	110.9(9)		O(6)-Al(3)-O(8)	106.6(8)
O(1) - A(1) - C	(3')	111(1)	O(3) - A(2) - O(6)	107.1(9)		O(6) = A(3) = O(9)	109.7(8)
O(2) - A(1) - C)(3)	106(1)	O(4) = A1(2) = O(5)	111.6(7)		O(7) - A(3) - O(8)	116.5(7)
O(2) - A(1) - C	X (3')	106(1)	O(4) - A(2) - O(6)	107.2(9)		O(7) - A(3) - O(9)	108.8(7)
O(3) - A(1) - C	$\dot{0}\dot{3}\dot{1}$	106(1)	O(5) - Al(2) - O(6)	110.6(7)		O(8) - A(3) - O(9)	108.8(8)
	,		A(1)=O(3)=A(2)	173(1)			
			Al(2) = O(6) = Al(3)	159.5(9)			
			A(1) = O(3) = A(2)	173(1)			
			$A_1(2) = O(6) = A_1(3)$	159 5(9)			

Results

(a) Solid-state Reactions.—The X-ray powder diffraction patterns obtained from these reactions were complex, and were not to be found in the J.C.P.D.S. files. However, from the

single-crystal data obtained from the three crystal structure determinations it was possible to produce simulated powder patterns for the three compounds using the POWD program.¹⁰ These were in excellent agreement with the experimental

Atom	X/a	Y/b	Z/c	Atom	X/a	Y/b	Z/c
Na(1)	0.894 0(4)	0.173 4(1)	0.673 2(2)	Al(1)	0,765 2(6)	0 126 6(2)	0.869 7(3)
Na(2)	1.089 7(4)	0.064 3(1)	0.938 3(2)	O(1)	0.803 7(6)	0.048 7(2)	1.125 8(4)
Na(3)	0.912 1(4)	0.001 1(1)	1.339 7(2)	O(2)	0.764 2(6)	0.207 9(2)	1.122 3(4)
Na(4)	0.895 0(4)	0.250 3(1)	0.916 6(3)	O(3)	0.083 6(4)	0.1372(1)	0.198 6(2)
Na(5)	0.678 7(3)	0.124 17(9)	1.039 1(2)	O(4)	0.380 5(6)	0.119 2(2)	0.045 8(4)
Table 6. Bond	lengths (Å) and a	ngles (°) for Na ₅ Al	O4 with standard d	eviations in pare	ntheses		
Al=O(1)	1.784(4)	Na(2)-O(1)	2.319(4)	Na(4)-O(1)	2.387(5)	O(1) - O(2)	2.945(5)
Al-O(2)	1.768(4)	Na(2) - O(2)	2.550(4)	Na(4) - O(3)	2.341(5)	O(1) - O(3)	2.934(5)
Al-O(3)	1.789(4)	Na(2) - O(2)	2.213(4)	Na(4) - O(3)	2.334(4)	O(1)-O(4)	2.884(5)
Al-O(4)	1.761(4)	Na(2) - O(4)	2.253(4)	Na(4) - O(4)	2.364(4)		
			.,	.,		O(2) = O(3)	2.854(5)
Na(1)~O(1)	2.283(4)	Na(3) - O(1)	2.529(5)	Na(5) - O(2)	2.400(4)		
Na(1) - O(1)	2.382(5)	Na(3) - O(2)	2.407(4)	Na(5) - O(3)	2.395(4)	O(3) - O(4)	2.868(5)
Na(1)-O(3)	2.313(4)	Na(3) = O(2)	2.484(5)	Na(5) - O(3)	2.449(4)		
Na(1)-O(4)	2.416(4)	Na(3)-O(4)	2.413(4)	Na(5)-O(4)	2.354(4)		
O(1)-Al-	-O(2) 11	1.9(2)	O(2)-Al-O(3)	106.7(2)		O(3)-Al-O(4)	107.8(2)
O(1)-Al-	-O(3) 11	0.4(2)	O(2)-Al-O(4)	110.9(2)			
O(1)-Al-	-O(4) 10	8.8(2)					

Figure 3. The crystal structure of Na₅AlO₄ viewed along the a axis

patterns and enabled the assignment of all peaks belonging to these three compounds. This showed that the major phases present were β -NaAlO₂, Na₇Al₃O₈, Na₁₇Al₅O₁₆, and Na₅Al-O₄. The phases identified in each reaction are given in Table 7 and the observed and calculated X-ray powder patterns for Na₇Al₃O₈, Na₁₇Al₅O₁₆, and Na₅AlO₄ are given in Tables 8, 9, and 10 respectively.

For $Na_2O : Al_2O_3$ ratios between 1:1 and 5:2 the only aluminates observed were β -NaAlO₂ and Na₇Al₃O₈, no evidence for the $5Al_2O_3 \cdot 2Na_2O$ compound $Na_4Al_2O_5$ being observed. It was therefore concluded that this compound does not exist under the experimental conditions used. At higher Na : Al ratios certain complications arose. The X-ray trace for the 3 : 1 product showed the presence of $Na_{17}Al_5O_{16}$, but a second, unknown compound was evident and this is denoted by X. The diffraction lines on this trace were slightly broadened so that resolution of some lines of $Na_{17}Al_5O_{16}$ was not possible although the peak intensities were in agreement with the computer simulation.

Both the 4: 1 and 7: 2 ratios gave pure $Na_{17}Al_5O_{16}$ and the 4: 1 trace showed some resolution of the multiplet centred at d = 2.58 Å. The trace from the 7: 2 reaction was the ' cleanest '

Table 7. Solid-state reactions

Al_2O_3	$\theta_c/^{\circ}C$	<i>t/</i> h	Products identified
1:1	700	18	NaAlO ₂
3:2	700	18	NaAlO ₂
2:1	700	18	$NaAlO_2$, $Na_7Al_3O_8$
7:3	700	18	$Na_7Al_3O_8$
5:2	700	18	$Na_7Al_3O_8$
3:1	800	48	Na17Al5O16, X
7:2	800	48	Na17Al5O16
4:1	700	12	Na17Al5O16
5:1	700	18	Na17AlsO16, Na3AlO4, X

trace obtained for $Na_{17}Al_5O_{16}$, although resolution of some of the peaks was not seen. No phase X was observed in these products.

(b) Liquid Sodium Reactions.—Inspection of Table 11(a) shows that Al_2O_3 , β -NaAlO₂, $Na_7Al_3O_8$, $Na_{17}Al_5O_{16}$, and Na_5AlO_4 are stable to liquid sodium and the aluminates may be formed by the reaction of Al_2O_3 with Na_2O dissolved in the sodium. The X-ray powder diffraction patterns of the products in a matrix of sodium and after the sodium had been removed by vacuum distillation were found to be identical. This comparison was necessary to eliminate the possibility that reaction had taken place between Al_2O_3 and solid Na_2O under vacuum after the excess of sodium had been removed by distillation. It is clear that, for the lower $Na_2O : Al_2O_3$ ratios, equilibrium has not been reached even after heating at 600 °C for 1 week.

It can be seen from Table 11(*a*) that, at the 2:1 and 3:1 ratios, there was not enough oxygen added to account for a full conversion of the alumina into $Na_{17}Al_5O_{16}$. It was not possible for extra oxygen to come from a vessel leak since the reactions at lower ratios, *i.e.* 1:2, 1:1, and 3:2, would also have been affected. In addition, the unknown phase X was observed at the 4:1 ratio. To help clarify these anomalies, a series of reactions, using NiO and NaAlO₂ as starting materials in liquid sodium [see Table 11(*b*)], were performed as it was thought that a more rapid equilibration would be possible.

Table	8.	The	X-ray	powder	diffraction	pattern	of	Na ₇	AI_3	08
-------	----	-----	-------	--------	-------------	---------	----	-----------------	--------	----

	7 / 1	Calc.	9	Obs.			Calc.		Obs.
nki	$a_{calc.}/A$	<i>I</i> / <i>I</i> ₀	$d_{\rm obs.}/{\rm A}$	<i>I</i> / <i>I</i> ₀	hkl	$d_{calc.}/A$	<i>1/1</i> 0	$d_{obs.}/A$	1/1 ₀
001	10.479	10			214	2.490	80 \	2 48	100
010	5.491	12	5.47	5	014	2.486	81∫	2.40	100
002	5.239	62	5 22	10	022	2.318	100	2.31	70
102	5.218	12∫	J.22	10	122	2.305	81	2.30	55
011	5.129	9	5.12	8	1 14, 314	2.210	38	2.25	25
101	5.032	6	5.03	6	312	1.997	43	1.986	25
1 1 1	4.452	14	4.45	9	412	1.992	59	1.975	33
I03	3.721	6	3.72	6	324	1.933	6)		
102	3.607	28		12	124	1.928	5 }	1.924	7
2 02	3.587	36	2 59	4J	310	1.924	4)		
012	3.577	13 [3.30	(unicolveu	I32	1.805	14	1.804	8
Ž 10	3.564	29		munipier)	032	1.798	17	1.796	13
II2	3.552	6	3.47	7	332	1.762	5	1.754	5
112	2.707	11	2.69	10	Ī16	1.744	4)		
212	2.689	18	2.67	20	306	1.739	3 >	1.735	3
2 20	2.650	66	2.63	45	216	1.735	4)		
2]2	2.610	6	2.60	12	130	1.638	6	1.635	3
204, 3 12	2.607	9	2.59	24	016	1.608	30	1.604	17
I22	2.577	5	2.56	12	316	1.597	24	1.595	13
022	2.565	9	2.55	14	106	1.565	5	1.559	5
202	2.516	58]	2.60	62	406, 422,	1.553	33	1.547	10
302	2.504	50∫	2.50	52	522				
					320	1.537	23	1.531	8

Table 9. The X-ray powder diffraction pattern of Na₁₇Al₅O₁₆

		Calc.		Obs.			Calc.		Obs.
hkl	$d_{calc.}/\text{\AA}$	I/I_0	$d_{obs.}/{ m \AA}$	<i>I</i> / <i>I</i> ₀	hkl	$d_{catc.}/\text{\AA}$	I/I_0	$d_{ m obs.}/{ m \AA}$	I/I_0
020	16.384	5	~~~		Ž 102	2.031	10	2.02	5
001	5.183	17	5.18	12	0102				
T11	5.113	14	5.08	10	203	1.959	9)	1.054	0
110	5.096	9			T13	1.957	11	1.954	y
041	4.380	6			312	1.949	6	1.046	0
150	4.054	24	4.047	10	311	1.947	10	1.940	y
061	3.759	20	3.74	10	0161	1.905	5	_	
0100	3.277	5			I53	1.878	19)	1 977	
111	2.972	7	2.97	5	351	1.869	19∫	1.072	11
152	2.724	10	2.72	6	I73	1.808	5		
002	2.591	19]			371	1.800	5		
202	2.588	62			313	1.723	4	1.717	3
T111	2.582	100 >	2.57	100	Ī113	1.638	12	1.635	6
1110	2.579	15			3112	1.633	6	1.630	0
200	2.579	18)			3111	1.631	13∫	1.030	o
0121	2.416	10	2.41	4	1171	1.619	4	1.614	3
062	2.341	31 \	2 3 3	24	0162	1.607	8	1 601	Δ
260	2.332	34∫	2.55	47	2160	1.604	8∫	1.001	4
1111	2.108	92	2.1	43					

As can be seen, however, the formation of $Na_{17}Al_5O_{16}$ was observed again even though insufficient oxygen was added initially and no satisfactory explanation can be offered as yet. The unknown phase X was again apparent, represented by the following *d* values (Å) (intensities in parentheses): 2.61(100), 2.31(40), 2.11(40), 1.94(25), 1.87(25), and 1.63(25).

(c) Crystal Structures.—The compound $Na_7Al_3O_8$ consists of AlO₄ tetrahedra sharing corners to form infinite double chains running parallel to the *a* axis. The tetrahedral angles are somewhat distorted varying between 103.4(1) and 116.3(1) and the bridging oxygens have rather larger Al=O=Al angles ranging from 130.1(1) to 157.1(2)°. The double chains consist of a series of non-planar six-membered rings which are joined on each side by two oxygen bridges. Bond lengths vary from 1.730(3) to 1.798(3) Å between aluminium and oxygen and from 2.226(3) to 2.795(3) Å between sodium and oxygen. The co-ordination of the sodium atoms is rather complex, being either four- or five-co-ordinate with non-regular angles varying from 66.31(9) to $170.1(1)^{\circ}$.

The compound Na₁₇Al₅O₁₆ is composed of isolated Al₅O₁₆ chains running parallel to the *b* axis surrounded by sodium atoms. The aluminium atoms, as found in Na₇Al₃O₈, are tetrahedrally bound to oxygen with rather distorted angles varying from 106(1) to 116.5(7)°. Five AlO₄ tetrahedra share corners with very large angles about the bridging oxygens [173(1) and 159.5(9)°] to form the Al₅O₁₆ chain. The coordination of the sodium atoms is again complex with Na(1), Na(2), Na(7), Na(8), and Na(9) being four-co-ordinate and the remainder five-co-ordinate, the O-Na-O angles varying from 66.2(6) to 138.0(6)°. Bond distances lie between 1.70(2) and 1.80(2) Å for Al-O and 2.22(2) and 2.89(2) Å for Na-O.

The most alkali-rich compound in the series, Na_5AlO_4 , contains the smallest aluminate ion AlO_4^{5-} which is tetra-

Table 10. Th	e X-rav	powder	diffraction	nattern	of Na.AlO.

		Calc.		Obs.				Calc.		Obs.
hkl	$d_{calc.}/\text{\AA}$	I/Io	$d_{obs}./\text{\AA}$	I/Io		hkl	$d_{calc.}/\text{\AA}$	I/Io	$d_{\rm obs.}/{ m \AA}$	I/I_0
021	6.691	18	6.53	15		242	2.211	7	2.20	10
002	5.047	22	4.95	30	21	3, 044	2.199	37	2.19	29
111	4.895	4	4.82	3		134	2.162	10	2.14	0
040	4.467	28 \	1 29	25		223	2.152	9∫	2.14	o
121	4.422	40∫	4.30	33		172	2.125	21	2.11	15
041	4.085	2	4.04	5		163	2.086	10	2.08	7
131	3.869	18	3.82	14		144	2.059	6]	2 04	20
102	3.834	5	3.78	5		261	2.051	20∫	2.04	20
141, 042	3.347	6	3.30	7	4	025	1.969	8	1.955	13
200	2.947	3	2.92	5		182	1.930	59	1.920	51
151	2.925	3 \	2 66	10	17	3, 311	1.917	5		_
210	2.908	11∫	2.00	10		214	1.906	12	1.897	12
220, 211	2.796	5	2.67	5		271	1.895	5		
230	2.641	35	2.62	29		321	1.885	43	1.875	34
133	2.623	23 \	2 50	46		125	1.868	8	1.861	11
152	2.614	39∫	2.39	40		191	1.849	13	1.842	10
062	2.565	46 `\	2 54	100		045	1.839	7)		
231	2.555	100∫	2.34	100		331	1.834	7 }	1.826	10
004	2.524	19	2.51	27		302	1.831	6)		
240	2.459	5 \	7 43	10		272	1.802	8	1.796	5
143	2.445	11∫	2.43	10	26	2, 183	1.776	5	1.768	3
232	2.340	7	2.33	6		0101	1.759	10	1.751	8
114	2.301	86	2.28	79		342	1.694	15	1.687	15
171	2.282	27	2.27	26		1101	1.686	12	1.678	13
153	2.262	40	2.25	42	283	2, 273	1.675	6	1.674	8
124	2.245	22	2 22	73		065	1.671	20 \	1 661	20
080	2.234	16∫	2.23	23		323	1.667	85	1.001	20

Table 11. Liquid sodium reactions

(a) NiO + Al_2O_3	+ Na "	(b) NiO + NaA		
Ra tio NiO : Al ₂ O3	Products identified	Ratio NiO : NaAlO2	Equiv. ratio Na ₂ O : Al ₂ O ₃	Products identified
1:2	α-Al2O3, β-NaAlO2	1:2	2:1	Na17Al5O16
1:1	α -Al ₂ O ₃ , β -NaAlO ₂ , Na ₇ Al ₃ O ₈	2:3	7:3	Na ₁₇ Al ₅ O ₁₆ , X (minor)
3:2	α -Al ₂ O ₃ , β -NaAlO ₂ , Na ₇ Al ₃ O ₈	0.8 : 1	2.6:1	$Na_{17}Al_5O_{16}, X$
2 : 1	$Na_{17}Al_5O_{16}$	6:5	17:5	Na17Al5O16, X
3:1	$Na_{17}Al_5O_{16}$			
4 : 1	$Na_{17}Al_5O_{16}$, X			
5:1	Na ₅ AlO ₄			

^a 600 °C, 168 h. Products identified from samples by X-ray diffraction. All products showed the presence of Ni metal resulting from the reduction of the NiO which was used to add oxygen (Na₂O) to the sodium. ^b 600 °C, 336 h. Products identified as indicated in footnote a.

hedral [angles falling between 106.7(2) and $111.9(2)^{\circ}$] and completely isolated by surrounding sodium atoms. From the view in Figure 3, it can be seen that the tetrahedra occur in double rows with the same vertical orientation running parallel to the *c* axis. Adjacent tetrahedra within each row are reflected in the 001 plane with respect to each other and those in the *b*-axis direction are related by a half-rotation about the vertical axis with or without a reflection in the 100 plane. All the sodium atoms are four-co-ordinate with Na=O bond distances between 2.213(4) and 2.550(4) Å and O-Na=O angles between 73.9(1) and 159.0(2)°.

Discussion

The three new compounds described, which are the only known sodium-rich aluminates, show interesting similarities to the iron and gallium systems. The ionic radii of Al^{3+} , Ga^{3+} , and Fe^{3+} are similar (0.51, 0.62, and 0.64 Å respectively). As can be seen from Table 12, which shows the compounds that have been reported for the three sodium ternary oxide systems,

the iron system has been extensively studied with singlecrystal structure determinations for all except ' Na₃FeO₃.' Cell dimensions of a = 13.37, b = 10.70, c = 6.13 Å, and $\beta = 117.8^{\circ}$ have been reported for this compound ¹¹ but no space group or structural details. For all three systems the 1:1 compounds have been studied, with two or three structural modifications designated by α , β , or γ existing for NaFeO₂, NaGaO₂, and NaAlO₂. Compounds of the same stoicheiometry are isostructural so that Na₅FeO₄, Na₅GaO₄, and Na₅AlO₄ all belong to the space group *Pbca* and consist of isolated MO₄ tetrahedra.

Similarly, $Na_8Fe_2O_7$ and $Na_8Ga_2O_7$ are isostructural as are $Na_7Fe_3O_8$ and $Na_7Al_3O_8$. There are several interesting gaps in this table since no analogues of $Na_4Fe_2O_5$ have been observed in the gallium system and we have no evidence for the formation of the aluminium compound under our experimental conditions. We also have no evidence to suggest the existence of $Na_8Al_2O_7$ in spite of the existence of $Na_8Fe_2O_7$ and $Na_8-Ga_2O_7$, although we have found the compound $Na_7Al_3O_8$. If there is a trend across the series then we might predict that

Table 12. Comparison of the known sodium-rich ferrates, gallates, and aluminates

Na-Fe-O	Ref.	Na-Ga-O	Ref.	Na-Al-O	Ref.
Na ₄ Fe ₂ O ₅ ^a	11, b	_			
Na ₇ Fe ₃ O ₈ ^a	c	Na7Ga3O8	12	Na7Al3O8 "	6
'Na ₃ FeO ₃ '	11	' Na3GaO3 '	12	Na17Al5O16 4	12
Na ₈ Fe ₂ O ₇ ^a	d	Na ₈ Ga ₂ O7 "	е		
Na₅FeO₄ ^a	9	Na ₅ GaO ₄ "	f	Na ₅ AlO ₄ ^a	6

^e Single-crystal structure determination reported. ^b G. Brachtel and R. Hoppe, Z. Anorg. Allg. Chem., 1978, 446, 97. ^c G. Brachtel and R. Hoppe, Angew. Chem., Int. Ed. Engl., 1977, 16, 43; Z. Anorg. Allg. Chem., 1978, 446, 87. ^d G Brachtel and R. Hoppe, Z. Anorg. Allg. Chem., 1978, 438, 15. ^e D. Fink and R. Hoppe, Z. Anorg. Allg. Chem., 1976, 122, 1. ^f D. Fink and R. Hoppe, Z. Anorg. Allg. Chem., 1975, 414, 193.

 $Na_7Ga_3O_8$ would be a stable compound, as the radius of Ga falls between those of Al and Fe, and indeed the existence of $Na_7Ga_3O_8$ has been postulated ¹² but no crystal structure has as yet been reported. It seems reasonable, however, that the smaller M^{3+} radii may cause $Na_4Ga_2O_5$, $Na_4Al_2O_5$, and $Na_8Al_2O_7$ to be unstable. These three compounds, if they exist, could be stable at lower temperatures than we have employed in this study.

The other point of interest is that no structure determinations have been carried out on Na₁FeO₁, Na₁GaO₁, or Na₃AlO₃ and it seems questionable whether these compounds exist. The reason for this may be the size of the alkali-metal cation as the compounds K₆Al₂O₆,⁴ K₆Fe₂O₆,¹³ K₆Ga₂O₆,¹² Rb₆Ga₂O₆,¹³ and Cs₆Ga₂O₆ have all been reported. The existence of 'Na₃GaO₃' is also claimed,¹² but no successful single-crystal structure determination has been reported, the space-group determination was uncertain, and it was reported that the system was complex about the stoicheiometry 3:1. We have found in the aluminium system that the compound Na₁₇Al₅O₁₆, which corresponds to Na_{3,4}AlO_{3,2}, occurs over a wide range of reactant ratios and is very close to the stoicheioometry of Na₃AlO₃. If the chains of corner-sharing AlO₄ tetrahedra were infinite then it would in fact have the same stoicheiometry as Na₃AlO₃, but restriction of the chain to five tetrahedral AlO₄ units gives rise to the rather unusual observed stoicheiometry. The fact that Na₇Al₃O₈ consists of six corner-sharing AlO₄ tetrahedra forming a ring may indicate that five tetrahedra is the maximum number that is stable in a linear configuration. It may be that the proposed compounds Na₃GaO₃ and Na₃FeO₃ comprise M₅O₁₆ chains instead of the M₂O₆ dimers of the potassium, rubidium, and caesium compounds, or of infinite chains.

The identity of compound X, although unknown at present, seems to be associated with the compound $Na_{17}Al_5O_{16}$ and indeed the X-ray pattern (although only the six major lines can be identified) shows similarities with $Na_{17}Al_5O_{16}$. It seems possible that it is also composed of $Al_xO_{3x+1}^{(3x+2)-}$ chains. A chain of three corner-linked tetrahedra would give rise to the stoicheiometry $Na_{11}Al_3O_{10}$ and four tetrahedra would give $Na_{14}Al_4O_{13}$ both of which lie within the observed Na : Al range for the occurrence of X. Indeed, the latter compound has recently been reported ¹⁴ although no structural information was given.

The other feature of these compounds worthy of mention is the Al-O-Al angles which are increased significantly from the expected tetrahedral angle. Increases of this type have been observed in several main-group and transition-metal ternary oxides and a compilation of these is given in Table 13. A convenient explanation for the angle widening is that the vacant 3d orbitals of aluminium are participating in π bonding leading to a strengthening of the bond and a shortening of the bond length.

The energy difference between the 3d and 3p orbitals is thought to be reduced by the presence of the highly electro-

Table 13. X-O-X Angles (°) for iron, gallium, and aluminium systems

Compound	Ref.	Angles
Na ₄ Fe ₂ O ₅	11, a	125.3, 169.5, 125.4
Na14Fe6O16	b	124.0, 123.8, 133.2, 168.0
K ₆ Fe ₂ O ₆	13	88.6
$Na_8Fe_2O_7$	с	119.7
LiGaO ₂	d	116.1, 114.0
$Na_8Ga_2O_7$	е	120.06
γ-LiAlO2	f	124.6
CaAl ₂ O ₄	8	132, 120
Na7Al3O8		130.1, 136.9, 145.4, 157.1
Na17Al3O16	7	159.5, 173
Ca ₂ FeAlO ₅	h	130.8
Ca ₂ Fe _{1.43} Al _{0.57} O ₅ Ca ₂ Fe _{1.28} Al _{0.72} O ₅	}i	128.4

^a G. Brachtel and R. Hoppe, Z. Anorg. Allg. Chem., 1978, 446, 97. ^b G. Brachtel and R. Hoppe, Angew. Chem., Int. Ed. Engl., 1977, 16, 43; Z. Anorg. Allg. Chem., 1978, 446, 87. ^c G. Brachtel and R. Hoppe, Z. Anorg. Allg. Chem., 1978, 438, 15. ^d M. Marezio, Acta Crystallogr., 1965, 18, 481. ^e D. Fink and R. Hoppe, Z. Anorg. Allg. Chem., 1976, 122, 1. ^f M. Merezio, Acta Crystallogr., 1965, 19, 396. ^g M. W. Dougill, Nature (London), 1957, 180, 292. ^h A. A. Colville and S. Geller, Acta Crystallogr., Sect. B, 1971, 27, 2311. ^t A. A. Colville and S. Geller, Acta Crystallogr., Sect. B, 1972, 28, 3196.

negative field produced by the O atoms.¹⁵ Also, if the *d*-orbital radial maximum is large compared to the bond lengths then the *d*-orbital contribution will be small, but again the presence of a polarising field can contract the *d* orbitals sufficiently to enable good orbital overlap.¹⁶ However, as π overlap occurs off the bond axis, the shrinkage needed is not too great. The involvement of *d* orbitals in bonding can qualitatively explain large angles, but it is difficult to confirm the bond shortening in the absence of an independent standard. For the gallium compounds, where Ga has a filled 3*d* shell, participation of the 4*d* orbitals would need to be invoked, but there is no way of knowing how large the energy mismatch would be. Similarly, Fe³⁺ has a *d*⁵ configuration with each 3*d* orbital already singly occupied (high spin) so that (*d*-*p*) π overlap is perhaps questionable in this case.

For a comprehensive review of bonding in silicates the reader is referred to a review by Dent Glasser.¹⁷

The effect of the Na⁺ ions in the structure cannot, however, be ignored. In the structure of rosenhahnite, Ca₃Si₃O₈(OH)₂, in which isolated Si₃O₈(OH)₂ groups are surrounded by Ca²⁺ ions, the asymmetric field generated by the cations causes angle distortions which also lead to bond-length changes.¹⁸ The aluminates described in this paper would be expected to provide further data for comparison of the various bonding theories and we have therefore examined the bond-angle and bond-length data of these compounds. The hybridisation state of the oxygen in the Al-O bond in the Al-O-Al linkage

Figure 4. Plot of mean Al=O bond length versus Al=O=Al angle for Na₇Al₃O₈ (\bullet), Na₁₇Al₃O₁₆ (O), and Ca_{8.3}NaAl₆O₁₈¹⁹ (\triangle)

has been used to explain the variations in the Al-O-Al angle. If the angle is near to 120° then the hybridisation state is sp^2 , whereas at 180° it is clearly sp. For the sp^2 state the third hybrid orbital is σ -bonded to the alkali-metal atom and thus the s character of this bond will affect the Na-O bond length (A-O) and the Al-O-Al angle (T-O-T). Brown et al.¹⁹ have studied the correlation between the A-O, T-O lengths and T-O-T angles for a variety of aluminosilicates and observed a negative correlation between T-O and A-O and a positive correlation between A-O and T-O-T. We found no such correlations for the sodium aluminates reported in this paper, which suggests that the strength of the Na-O interaction is not a significant factor. In an analysis of the structure of Ca_{8.5}NaAl₆O₁₈, Nishi and Takeuchi²⁰ observed a dependence of the Al-O-Al bridge bond lengths on the angles at oxygen. A plot of these data gave a slope consistent with that obtained by Brown et al. for the Al-O bond versus the Al-O-Si angle. Extrapolation of the line gave A-O 1.74 Å at Al-O-Al 180° and 1.77 Å at 120°. This was taken to be consistent with the $d-p_{\pi}$ model of bonding proposed by Cruickshank.²¹ Data obtained from Na₇Al₃O₈ and Na₁₇Al₅O₁₆ also showed a good correlation with the data of Nishi and Takeuchi (Figure 4), although there was much poorer agreement for a plot of the Al-O bond length against the mean of the three angles involving that bond.

In conclusion we feel that our results indicate that $d-p_{\pi}$ bonding in aluminates occurs to a lesser degree than that in

silicates and that the observed distortions from the tetrahedral angles are more likely to be the result of the asymmetric cation field of the Na $^+$ ions.

References

- F. Stewner and R. Hoppe, Z. Anorg. Allg. Chem., 1971, 380, 241.
 F. Stewner and R. Hoppe, Z. Anorg. Allg. Chem., 1971, 381, 149.
- 3 R. Hoppe and H. Konig, Z. Anorg. Allg. Chem., 1977, 430, 211.
- 4 A. Bon, C. Gleitzer, A. Courtois, and J. Protas, C.R. Acad. Sci., 1974, 278, 785.
- 5 A. La Ginestra, M. Lo Jacono, and P. Porta, J. Therm. Anal., 1972, 4, 5.
- 6 M. G. Barker, P. G. Gadd, and M. J. Begley, J. Chem. Soc., Chem. Commun., 1981, 379.
- 7 M. G. Barker, P. G. Gadd, and S. C. Wallwork, J. Chem. Soc., Chem. Commun., 1982, 516.
- 8 MULTAN 78, A Program for the automatic solution of crystal structures from X-ray diffraction data, P. Main, Department of Physics, University of York, 1978.
- 9 CRYSTALS, The Oxford Crystallographic Package, J. R. Carruthers, Oxford University, 1975.
- 10 D. K. Smith, POWD, A Fortran Program for Calculating X-Ray Powder Diffraction Patterns, University of California, 1963.
- 11 G. Brachtel and R. Hoppe, Naturwissenschaften, 1977, 64, 271.
- 12 R. Hoppe and F. Griesfeller, Z. Anorg. Allg. Chem., 1978, 440, 74.
- 13 H. Rieck and R. Hoppe, Z. Anorg. Allg. Chem., 1974, 408, 151.
- 14 R. Hoppe, Angew. Chem., Int. Ed. Engl., 1981, 20(1), 63.
- 15 D. P. Craig, A. Maccoll, R. S. Nyholm, L. E. Orgel, and L. E. Sutton, J. Chem. Soc., 1954, 332.
- 16 T. B. Brill, J. Chem. Educ., 1973, 50, 392.
- 17 L. S. Dent Glasser, 'Molecular Structure by Diffraction Methods,' Chem. Soc. Specialist Periodical Reports, 1978, vol. 6, p. 132.
- 18 Che'ng Wan, S. Ghose, and G. V. Gibbs, Am. Mineral., 1977, 62, 503.
- 19 G. E. Brown, G. V. Gibbs, and P. H. Ribbe, Am. Mineral., 1969, 54, 1044.
- 20 F. Nishi and Y. Takeuchi, Acta Crystallogr., Sect. B, 1975, 31, 1169.
- 21 D. W. J. Cruickshank, J. Chem. Soc., 1961, 5486.

Received 23rd June 1983; Paper 3/1243